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ABSTRACT
Background: Dietary acid load is a clinically important aspect of the diet that reflects the balance between acid-

producing foods, for example, meat and cheese, and base-producing foods, for example, fruits and vegetables.

Methods: We used metabolomics to identify blood biomarkers of dietary acid load in 2 independent studies of chronic

kidney disease patients: the African American Study of Kidney Disease and Hypertension (AASK, n = 689) and the

Modification of Diet in Renal Disease (MDRD, n = 356) study. Multivariable linear regression was used to assess the

cross-sectional association between serum metabolites whose identity was known (outcome) and dietary acid load

(exposure), estimated with net endogenous acid production (NEAP) based on 24-h urine urea nitrogen and potassium,

and adjusted for age, sex, race, randomization group, measured glomerular filtration rate, log-transformed urine protein-

to-creatinine ratio, history of cardiovascular disease, BMI, and smoking status.

Results: Out of the 757 known, nondrug metabolites identified in AASK, 26 were significantly associated with NEAP

at the Bonferroni threshold for significance (P < 6.6 × 10−5). Twenty-three of the 26 metabolites were also identified in

the MDRD study, and 13 of the 23 (57%) were significantly associated with NEAP (P < 2.2 × 10−3), including 5 amino

acids (S-methylmethionine, indolepropionylglycine, indolepropionate, N-methylproline, N-δ-acetylornithine), 2 cofactors

and vitamins (threonate, oxalate), 1 lipid (chiro-inositol), and 5 xenobiotics (methyl glucopyranoside, stachydrine, catechol

sulfate, hippurate, and tartronate). Higher levels of all 13 replicated metabolites were associated with lower NEAP in both

AASK and the MDRD study.

Conclusion: Metabolomic profiling of serum specimens from kidney disease patients in 2 study populations identified

13 replicated metabolites associated with dietary acid load. Additional studies are needed to validate these compounds

in healthy populations. These 13 compounds may potentially be used as objective markers of dietary acid load in future

nutrition research studies. J Nutr 2019;149:578–585.
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Introduction

Guidelines for management of chronic kidney disease recom-
mend restricting dietary intake of individual nutrients including
protein to slow kidney disease progression (1). Recent research
suggests that the source of dietary protein may influence kidney
disease risk (2). Specifically, consumption of red and processed
meat was prospectively associated with increased risk of kidney
disease, whereas consumption of nuts, legumes, and low-fat
dairy was associated with reduced risk of incident chronic
kidney disease (2). In addition, higher adherence to the Dietary
Approaches to Stop Hypertension (DASH) diet, which consists
of a high intake of fruits, vegetables, nuts, legumes, and low-
fat dairy products, and a low intake of red and processed meat
and sodium, was shown to be associated with a lower risk of

kidney disease (3). Replacing animal sources of protein with
plant sources of protein along with increased intake of fruits
and vegetables is 1 proposed strategy for improving health and
maintaining nutritional status on a low-protein diet (4).

Dietary acid load, or the balance of acid-producing foods
(such as meats and cheese) and base-producing foods (such as
fruits and vegetables), is inextricably linked to type of dietary
protein and may be 1 mechanism underlying the association
between dietary intake and risk for kidney disease progression
(5–7). In the Atherosclerosis Risk in Communities study, we
found that higher quartiles of dietary acid load, estimated by
net endogenous acid production (NEAP) and potential renal
acid load, were significantly associated with an elevated risk
of incident chronic kidney disease (8). Among individuals with
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kidney disease and hypertension in the African American Study
of Kidney Disease and Hypertension (AASK), higher quartiles
of NEAP were associated with faster decline in glomerular
filtration rate (GFR) (6). It has also been demonstrated in
clinical trials that reducing acid load through diet modification
attenuates kidney injury and slows GFR decline (9–11).

There is a critical need for new biomarkers of dietary intake
as an objective means of assessing food consumption (12,
13). Dietary acid load has historically been estimated using
either self-report of dietary intake, which is prone to biases,
or measurement of compounds in urine specimens, which is
burdensome for study participants and patients to collect (5).
The blood metabolome provides readily accessible, unbiased
characterization of food intake and metabolism. Relating
standardly assessed dietary acid load to blood metabolites may
identify new biomarkers and metabolic pathways affected by
dietary acid load (14).

The objective of the present study was to identify blood
biomarkers of dietary acid load in AASK with external
replication in the Modification of Diet in Renal Disease
(MDRD) study. We aimed to discover new and reproducible
biomarkers of dietary acid load, as a clinically important and
potentially modifiable risk factor.

Methods
Study design
The present study is a discovery analysis of metabolites associated with
dietary acid load in AASK with replication in the MDRD study. In
both studies, we performed a cross-sectional analysis. AASK was a
multicenter, randomized 3 × 2 factorial trial designed to test the effect of
antihypertensive medications and blood pressure control on the rate of
change in GFR (15). Participants were enrolled and randomly assigned
between 1995 and 1998 and were followed through 2001. The MDRD
study was a randomized, 2 × 2 factorial trial on the effect of dietary
protein and phosphorus intake and blood pressure on kidney disease
progression, defined primarily as change in GFR (16). Participants were
invited to participate in the MDRD study between 1989 and 1991,
and they were followed through 1994. Approval was provided by the
institutional review board and procedures were followed in accordance
with the Declaration of Helsinki.

Study population
Study participants who attended the baseline visit in AASK and those
who attended the 12-mo follow-up visit in the MDRD study were
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included in the present study. AASK participants included 1094 African-
American adults aged 18–70 y from 13 states in the United States with
kidney disease attributed to hypertension and GFR between 20 and 65
mL/(min · 1.73 m2). Of the 1094 randomly assigned participants in
AASK, we excluded those with missing information for urine excretion
of urea nitrogen (n = 1), possible overcollection of urine over 24 h
defined as >30% of expected creatinine excretion (22.1 mg/kg for
men and 17.2 mg/kg for women) (n = 242), possible undercollection
of urine defined as <30% of expected creatinine excretion (n = 72),
measured glomerular filtration rate (mGFR) <20 mL/(min · 1.73 m2),
and those for whom metabolomics data were not available (n = 87),
yielding an analytic sample size of 689 (Figure 1A). The definitions of
possible overcollection and undercollection were the same as used in
prior research (6, 17).

In the MDRD study, participants included 840 men and women aged
18–70 y with chronic kidney disease [GFR from 13 to 55 mL/(min · 1.73
m2)] from 15 clinical centers. Among the 840 randomized participants,
we excluded those who did not attend the 12-mo follow-up visit, which
was when blood specimens were collected for metabolomic profiling
(n = 94), those who possibly undercollected urine (n = 168), those who
possibly overcollected urine (n = 59), those with mGFR <20 mL/(min
· 1.73 m2) (n = 134), those with missing mGFR (n = 12), and those
for whom metabolomics data were not available (n = 17), yielding an
analytic sample size for replication of 356 (Figure 1B). The rationale for
excluding those with low mGFR was to increase homogeneity between
the discovery and replication samples.

Estimation of dietary acid load
In both AASK and the MDRD study, 24-h urine specimens were
collected from study participants. Protein intake (g/d) was calculated
as: (6.25 × [urine urea nitrogen (g/d) + body weight (kg) × 0.031])
(6, 18). If urine protein excretion was ≥5 g/d, we adjusted the estimate
of protein intake by subtracting urine protein from the estimate. We
calculated NEAP as a measure of dietary acid load using 24-h urine
excretion of urea nitrogen to estimate dietary intake of protein and
24-h urine excretion of potassium: NEAP (mEq/d) = 54.5 × [protein
(g/d)/potassium (mEq/d)] − 10.2 (19).

Metabolomic profiling
Serum specimens were stored at −70◦C before laboratory measurement.
In both studies, metabolomic profiling was conducted by Metabolon
through use of 2 reverse phase ultraperformance liquid chromatography
tandem mass spectrometry with positive ion mode electrospray ioniza-
tion, another reverse phase ultraperformance liquid chromatography
tandem mass spectrometry method with negative ion mode electrospray
ionization, and a hydrophilic interaction ultraperformance liquid
chromatography tandem mass spectrometry method with negative ion
mode electrospray ionization (20). Metabolomic profiling of the AASK
specimens was conducted in 2017 and that of the MDRD study
specimens was conducted in 2015. Metabolites were identified by
matching features to a library of reference standards on the basis of
retention time, mass-to-charge ratio, and chromatographic data. Levels
of metabolites were quantified using the area under the curve of the mass
spectrometry peaks after interday normalization. In AASK, the analysis
was restricted to known, nondrug metabolites, and, in the MDRD study,
the analysis was restricted to known, nondrug metabolites that were
statistically significant in AASK and identified in the MDRD study.

In AASK, a total of 1228 metabolites were identified in the serum
specimens, including 833 known and 395 unknown metabolites. We
excluded specimens with >50% missing for all metabolites. Metabolites
with >80% missing across specimens were excluded. For the remaining
known, nondrug metabolites, undetectable values were imputed to
the minimum measured value for each metabolite. Metabolites were
then scaled to a median value of 1 and log-transformed. In addition,
metabolites with a variance <0.01 and outliers (defined as values >5
SD above or below the mean) were excluded. After the preprocessing
step, a total of 1194 metabolites remained, including 819 known and
375 unknown metabolites. There were 62 metabolites classified in the
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FIGURE 1 Flow chart of study participant selection in AASK (A) and the MDRD study (B). AASK, African American Study of Kidney Disease
and Hypertension; MDRD, Modification of Diet in Renal Disease; mGFR, measured glomerular filtration rate.

drug subpathway that were excluded. The present analysis was limited
to the remaining 757 known, nondrug metabolites.

In AASK and the MDRD study, the median correlations between
metabolite concentrations for 20 blind duplicates were 0.92 and 0.91,
respectively, and 86% and 72%, respectively, of metabolites had a
correlation coefficient >0.80.

Covariates
GFR was measured by urinary clearance of 125I-iothalamate and
estimated with serum creatinine using the 2009 Chronic Kidney
Disease Epidemiology equation (21, 22). Urine concentrations of urea
nitrogen, potassium, protein, creatinine in 24-h urine specimens, and
serum concentrations of bicarbonate and creatinine from fasting blood
specimens were measured using standard procedures, as previously
described (15, 16, 23).

Statistical analysis
We reported descriptive statistics (mean, standard deviation, frequen-
cies) for baseline characteristics of study participants in AASK and the
MDRD study according to tertiles of NEAP. The distribution of dietary
acid load values, as quantified by NEAP, was displayed using a kernel
density plot.

We investigated the cross-sectional association between each serum
metabolite (outcome) and dietary acid load (exposure), estimated
with NEAP, in AASK using multivariable linear regression. The main
model was adjusted for demographic characteristics (age, sex, race),
study design features (randomization group, which in AASK included
antihypertensive medication and blood pressure target, and, in the
MDRD study, included protein intake and blood pressure target),
kidney measures (mGFR, log-transformed urine protein-to-creatinine
ratio), and indicators of health status and health behaviors (history of
cardiovascular disease, BMI, and smoking status). In addition, we ran
models without adjusting for mGFR to examine the influence of this
covariate on the results. The Bonferroni method was used to account
for multiple comparisons, that is, in AASK, we used a threshold of
6.6 × 10−5 (0.05/757 metabolites) to assess statistical significance, and,
in the MDRD study, we used a threshold of 2.2 × 10−3 (0.05/23
metabolites) (24). Estimates for metabolites that were significantly
associated with NEAP in AASK and were identified in the MDRD
study were pooled across the 2 studies using DerSimonian and Laird

random-effects models (25). For the serum metabolites that were
significantly associated with NEAP in both AASK and the MDRD study,
we calculated Pearson correlation coefficients between metabolites
using data from AASK. We calculated C-statistics as a measure of
the cumulative ability of the significant metabolites in addition to
the covariates (age, sex, race, randomization group, mGFR, log-
transformed urine protein-to-creatinine ratio, history of cardiovascular
disease, BMI, and smoking status) to classify participants in the highest
quartile compared with the lower 3 quartiles of dietary acid load in both
AASK and the MDRD study.

All analyses were conducted using Stata statistical software version
14.2 (StataCorp).

Results

In the discovery sample of 689 AASK participants, the mean
age was 54 y, 37% were female, 100% were black, and mean
mGFR was 46 mL/(min · 1.73 m2). About half of AASK
participants (51%) had a history of cardiovascular disease, the
mean BMI was 30 kg/m2, and 28% were current smokers.
In the replication sample of 356 MDRD study participants,
mean age was 52 y, 38% were female, 8% were black, and
mean mGFR was 36 mL/(min · 1.73 m2). Relative to AASK
participants, a smaller proportion of MDRD study participants
had a history of cardiovascular disease (6%) and were current
smokers (10%), and mean BMI was lower (27 kg/m2). In both
AASK and the MDRD study, weight, urea nitrogen, and protein
intake were higher and urine potassium and serum bicarbonate
were lower with higher tertiles of NEAP (Table 1). There was
no appreciable difference in mGFR and estimated glomerular
filtration rate across tertiles of NEAP.

The mean (SD) NEAP was 78.4 (33.4) mEq/d in AASK and
54.0 (21.2) mEq/d in the MDRD study. The kernel density plot
for NEAP demonstrated a wider range and higher values in
AASK relative to the MDRD study (Figure 2).

Out of the 757 metabolites analyzed in AASK, a total of
26 known serum metabolites were significantly associated with
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TABLE 1 Baseline characteristics of study participants in AASK and the MDRD study according to tertile of net endogenous acid
production1

AASK (N = 689) MDRD (N = 356)

Characteristic Tertile 1 (n = 230) Tertile 2 (n = 230) Tertile 3 (n = 229) Tertile 1 (n = 119) Tertile 2 (n = 119) Tertile 3 (n = 118)

NEAP, mEq/d 47.5 [4.6–61.1] 73.0 [61.2–86.5] 115.0 [86.5–300.0] 32.4 [12.0–43.3] 52.2 [43.5–62.9] 77.6 [63.4–149.6]
Age, y 53.9 ± 10.7 54.7 ± 10.7 54.0 ± 10.8 53.9 ± 11.2 51.8 ± 11.2 49.6 ± 12.0
Female 91 (39.6%) 82 (35.7%) 79 (34.5%) 51 (42.9%) 41 (34.5%) 43 (36.4%)
Black 230 (100.0%) 230 (100.0%) 229 (100.0%) 5 (4.2%) 9 (7.6%) 14 (11.9%)
mGFR, mL/(min · 1.73 m2) 45.4 ± 12.9 45.7 ± 13.4 46.5 ± 13.2 36.1 ± 9.7 35.8 ± 10.8 36.4 ± 9.4
eGFR, mL/(min · 1.73 m2) 42.2 ± 14.0 42.9 ± 13.8 42.6 ± 14.1 41.7 ± 12.7 40.0 ± 13.3 39.1 ± 11.3
UPCR, mg/g 368.9 ± 527.3 318.2 ± 549.6 313.5 ± 518.7 298.3 ± 967.7 446.5 ± 1053.4 416.9 ± 646.8
History of CVD 119 (51.7%) 113 (49.1%) 119 (52.0%) 4 (3.4%) 10 (8.4%) 6 (5.1%)
BMI, kg/m2 30.2 ± 5.8 29.9 ± 6.3 30.4 ± 6.5 26.0 ± 3.6 27.0 ± 3.8 28.0 ± 4.6
Weight, kg 88.3 ± 18.0 88.3 ± 20.3 89.8 ± 20.6 75.2 ± 13.0 79.7 ± 14.9 83.9 ± 17.6
Smoking status

Current smoker 61 (26.5%) 59 (25.7%) 73 (31.9%) 12 (10.1%) 7 (5.9%) 18 (15.3%)
Former smoker 68 (29.6%) 84 (36.5%) 66 (28.8%) 52 (43.7%) 50 (42.0%) 43 (36.4%)
Never smoker 101 (43.9%) 87 (37.8%) 90 (39.3%) 55 (46.2%) 62 (52.1%) 57 (48.3%)

BP medication2

Ramipril 95 (41.3%) 92 (40.0%) 79 (34.5%) N/A N/A N/A
Metoprolol 88 (38.3%) 91 (39.6%) 105 (45.9%) N/A N/A N/A
Amlodipine 47 (20.4%) 47 (20.4%) 45 (19.7%) N/A N/A N/A

BP goal2

Low 112 (48.7%) 117 (50.9%) 108 (47.2%) 56 (47.1%) 58 (48.7%) 68 (57.6%)
Moderate 118 (51.3%) 113 (49.1%) 121 (52.8%) 63 (52.9%) 61 (51.3%) 50 (42.4%)

Protein intervention2

Very low N/A N/A N/A 4 (3.4%) 1 (0.8%) 1 (0.8%)
Low N/A N/A N/A 85 (71.4%) 51 (42.9%) 33 (28.0%)
Usual N/A N/A N/A 30 (25.2%) 67 (56.3%) 84 (71.2%)

Serum bicarbonate, mEq/L 25.5 ± 2.7 25.0 ± 2.7 24.8 ± 2.6 25.1 ± 3.4 24.6 ± 3.4 23.8 ± 3.3
Protein intake, g/d 69.5 ± 23.7 72.7 ± 21.9 75.5 ± 23.5 58.3 ± 17.8 74.5 ± 23.4 80.2 ± 20.3
Urine urea nitrogen, g/d 8.4 ± 3.4 8.9 ± 3.1 9.3 ± 3.4 7.0 ± 2.7 9.5 ± 3.6 10.3 ± 3.0
Urine potassium, mEq/d 68.7 ± 31.4 48.2 ± 15.7 34.0 ± 11.7 76.2 ± 23.4 65.3 ± 20.5 50.8 ± 14.3

1Values are mean ± SD for continuous variables and n (%) for categorical variables. For NEAP, values are mean [minimum-maximum]. AASK, African American Study of Kidney
Disease and Hypertension; BP, blood pressure; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal Disease; mGFR,
measured glomerular filtration rate; N/A, not applicable; NEAP, net endogenous acid production; UPCR, urine protein-to-creatinine ratio.
2BP medication, BP goal, and protein intervention refer to the randomly assigned groups in AASK (BP medication and BP goal) and the MDRD study (BP goal and protein
intervention). N/A is used for randomly assigned groups that are not relevant to the specific study (protein intervention for AASK and BP medication for the MDRD study).

NEAP at the Bonferroni threshold (0.05/757 = 6.6 × 10−5)
after adjusting for age, sex, race, randomization group (an-
tihypertensive medication and blood pressure target), mGFR,
log-transformed urine protein-to-creatinine ratio, history of
cardiovascular disease, BMI, and smoking status (Table 2;
Supplemental Table 1; Figure 3A). The categories of metabolites
that were represented among the significant known serum
metabolites included amino acids (n = 6), carbohydrates (n = 3),
cofactors and vitamins (n = 4), 1 lipid, and xenobiotics (n = 12).
When the model did not account for mGFR, there were 25
metabolites that were significantly associated with NEAP in
AASK (Figure 3B).

In the MDRD study, 23 out of the 26 serum metabolites
that were significantly associated with NEAP in AASK were
detected. A total of 13 out of the 23 serum metabolites (57%)
was significantly associated with NEAP in the MDRD study at
the Bonferroni threshold (0.05/23 = 2.2 × 10−3) after adjusting
for age, sex, race, randomization group (protein intake and
blood pressure target), mGFR, log-transformed urine protein-
to-creatinine ratio, history of cardiovascular disease, BMI, and
smoking status. The 13 replicated metabolites included 5 amino
acids (S-methylmethionine, indolepropionylglycine, indolepro-
pionate, N-methylproline, N-δ-acetylornithine), 2 cofactors and

vitamins [threonate, oxalate (ethanedioate)], 1 lipid (chiro-
inositol), and 5 xenobiotics [tartronate (hydroxymalonate), cat-
echol sulfate, hippurate, methyl glucopyranoside (α and β), and
stachydrine] (Table 2; Figure 3A). The replicated metabolites
represented a variety of subpathways: urea cycle; arginine
and proline metabolism; tryptophan metabolism; methion-
ine, cysteine, S-adenosylmethionine, and taurine metabolism;
ascorbate and aldarate metabolism; inositol metabolism; food
component/plant; benzoate metabolism; and bacterial/fungal.
Higher levels of all 13 replicated metabolites were asso-
ciated with lower NEAP (negative β-coefficients) in both
AASK and the MDRD study. The correlation between the
13 replicated metabolites ranged from 0.08 to 0.82, with
the highest correlation observed between stachydrine and
N-methylproline (Table 3).

There was a significant difference in the ability of this panel
of 13 replicated metabolites and covariates (age, sex, race,
randomization group, mGFR, log-transformed urine protein-
to-creatinine ratio, history of cardiovascular disease, BMI,
and smoking status) to predict the highest of the NEAP
quartiles, compared to a model with only the participant
characteristics in both AASK (C-statistic for model without
metabolites: 0.592; C-statistic for model with metabolites:
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FIGURE 2 Kernel density plot of distribution of net endogenous acid
production in AASK and the MDRD study. Solid line represents kernel
density plot for AASK participants. Dashed line represents kernel
density plot for MDRD participants. AASK, African American Study
of Kidney Disease and Hypertension; MDRD, Modification of Diet in
Renal Disease.

0.755; P < 0.001) and the MDRD study (C-statistic for
model without metabolites: 0.733; C-statistic for model with
metabolites: 0.806; P < 0.001).

Discussion

In the discovery study of 689 African-American adults with
kidney disease and hypertension in AASK, we identified 26
out of 757 detected metabolites that were inversely associated
with dietary acid load and independent of demographics,
health behaviors and status, study design features, mGFR, and
proteinuria. Thirteen of the identified metabolite associations
replicated in an independent study population of 356 predom-
inantly Caucasian adults with kidney disease in the MDRD
study, including those involved in the metabolism of amino

acids, cofactors and vitamins, lipids, and xenobiotics: methyl
glucopyranoside (α and β), stachydrine, N-methylproline,
catechol sulfate, indolepropionylglycine, N-δ-acetylornithine,
S-methylmethionine, indolepropionate, hippurate, chiro-
inositol, threonate, oxalate (ethanedioate), and tartronate
(hydroxymalonate). This panel of 13 metabolites had a high
cumulative ability to predict high dietary acid load beyond
study design and participant characteristics in AASK and the
MDRD study.

To the best of our knowledge, no prior research has studied
metabolites associated with dietary acid load. However, many
of the replicated metabolites found in the present study have
been identified as biomarkers of other aspects of the diet. In
a recent analysis of the DASH dietary pattern, we found that
higher serum methyl-glucopyranoside (α and β), stachydrine,
N-methylproline, and chiro-inositol were among the top
10 most influential metabolites for distinguishing between
the DASH diet and control diet (26). N-δ-acetylornitine,
S-methylmethionine, and catechol sulfate were also associated
both with the DASH dietary pattern in the previous study and
with dietary acid load in the present study. The concordance
of the present study with our prior research on the DASH diet
is consistent with previous reports that the DASH diet has a
relatively low acid load (5). In terms of dietary components
that these metabolites represent, methyl-glucopyranoside is a
marker of total fruit intake, stachydrine and N-methylproline
are markers of citrus fruit, and chiro-inositol is a component of
phytic acid, which is present in many plant foods (27–30).

We also observed that higher serum levels of a couple of
the metabolites associated with lower dietary acid load in
the present study was associated with lower protein intake
in a previous analysis of the MDRD study: indolepropionate
and S-methylmethionine (31). Indolepropionate has also been
reported to be inversely associated with consumption of red
meat and eggs (30). We also found that indolepropionylglycine,
which is similar to indolepropionate in that they are both
involved in tryptophan metabolism, was associated with lower
dietary acid load and has not been previously reported in the
literature as a biomarker of dietary intake. S-methylmethionine,

TABLE 2 Serum known metabolites significantly associated with net endogenous acid production in AASK and the MDRD study1

AASK MDRD

Superpathway Subpathway Metabolite β2 SE P value β2 SE P value

Amino acid Methionine, cysteine, SAM, and
taurine metabolism

S-methylmethionine −0.054 0.012 5.06 × 10−06 −0.186 0.047 8.18 × 10−05

Amino acid Tryptophan metabolism Indolepropionylglycine −0.061 0.012 2.25 × 10−07 −0.144 0.032 6.90 × 10−06

Amino acid Tryptophan metabolism Indolepropionate −0.061 0.011 6.65 × 10−08 −0.109 0.027 8.34 × 10−05

Amino acid Urea cycle; arginine and proline
metabolism

N-methylproline −0.120 0.015 3.34 × 10−15 −0.172 0.032 9.15 × 10−08

Amino acid Urea cycle; arginine and proline
metabolism

N-δ-acetylornithine −0.043 0.006 8.29 × 10−12 −0.071 0.016 1.31 × 10−05

Cofactors and vitamins Ascorbate and aldarate metabolism Threonate −0.048 0.006 5.13 × 10−15 −0.044 0.013 1.12 × 10−03

Cofactors and vitamins Ascorbate and aldarate metabolism Oxalate (ethanedioate) −0.041 0.005 9.72 × 10−16 −0.033 0.010 1.14 × 10−03

Lipid Inositol metabolism Chiro-inositol −0.145 0.020 4.13 × 10−13 −0.127 0.035 3.38 × 10−04

Xenobiotics Bacterial/fungal Tartronate (hydroxymalonate) −0.079 0.009 2.45 × 10−17 −0.038 0.012 1.19 × 10−03

Xenobiotics Benzoate metabolism Catechol sulfate −0.039 0.008 3.84 × 10−06 −0.104 0.020 2.36 × 10−07

Xenobiotics Benzoate metabolism Hippurate −0.042 0.010 1.33 × 10−05 −0.086 0.024 3.15 × 10−04

Xenobiotics Food component/plant Methyl glucopyranoside (α + β ) −0.118 0.012 8.04 × 10−22 −0.156 0.025 1.82 × 10−09

Xenobiotics Food component/plant Stachydrine −0.123 0.015 6.40 × 10−16 −0.188 0.034 8.86 × 10−08

1Statistical significance was assessed using Bonferroni method to account for multiple comparisons (AASK: P < 6.6 × 10−5; MDRD: P < 2.2 × 10−3). AASK, African American
Study of Kidney Disease and Hypertension; MDRD, Modification of Diet in Renal Disease.
2β-coefficients are expressed per 10 mEq/d higher net endogenous acid production.
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FIGURE 3 Plot of −Log10(P values) for the adjusted association between serum known metabolites and net endogenous acid production
in AASK according to metabolic pathway with adjustment for mGFR (A) and without adjustment for mGFR (B). P values were calculated from
multivariable linear regression models adjusted for age, sex, race, randomly assigned intervention group (antihypertensive medication and blood
pressure control target), log-transformed urine protein-to-creatinine ratio, history of cardiovascular disease, BMI, and smoking status. For (A),
models were also adjusted for mGFR. Asterisks denote metabolites that replicated in the MDRD study. The solid black line represents the
Bonferroni threshold for determining statistical significance in AASK (0.05/757 = 6.6 × 10−5). AASK, African American Study of Kidney Disease
and Hypertension; MDRD, Modification of Diet in Renal Disease; mGFR, measured glomerular filtration rate.

in addition to being inversely associated with dietary protein,
is detected in cruciferous vegetables, such as cabbage and corn
(31–33).

Four additional metabolites were identified in our study as
novel markers of dietary acid load: hippurate, threonate, ox-
alate (ethanedioate), and tartronate (hydroxymalonate). Higher
blood levels of hippurate are associated with consumption of
fruit and whole grains, and it is formed in the gut through
metabolism of phenolic compounds (34, 35). Both oxalate
and threonate are degradation products from metabolism of
ascorbic acid, and therefore serve as markers of plant foods
containing vitamin C (27, 30, 36). Higher blood levels of

threonate has been related to dietary intake of green leafy
vegetables (29). To the best of our knowledge, tartronate has not
been reported as a diet biomarker. It may be similar to threonate
and oxalate because tartronate semialdehyde is also involved in
ascorbate and aldarate metabolism.

Overall, we found 13 metabolites that were significantly
associated with dietary acid load in 2 independent study
populations, including both established and more novel diet
biomarkers. An innovative approach of the present study was
to relate the serum metabolome to dietary acid load, which is
a biologically relevant and holistic measure of acid-producing
foods, such as meats and cheese, and base-producing foods,

TABLE 3 Pearson correlation coefficients for 13 serum known metabolites significantly associated with net endogenous acid
production in AASK and the MDRD study1
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N-δ-acetylornithine 1.00 — — — — — — — — — — — —
N-methylproline 0.37 1.00 — — — — — — — — — — —
S-methylmethionine 0.12 0.14 1.00 — — — — — — — — — —
Indolepropionate 0.21 0.09 0.21 1.00 — — — — — — — — —
Indolepropionylglycine 0.33 0.10 0.17 0.58 1.00 — — — — — — — —
Oxalate (ethanedioate) 0.24 0.39 0.14 0.11 0.12 1.00 — — — — — — —
Threonate 0.36 0.38 0.14 0.15 0.21 0.76 1.00 — — — — — —
Chiro-inositol 0.42 0.78 0.14 0.10 0.22 0.36 0.40 1.00 — — — — —
Catechol sulfate 0.30 0.10 0.19 0.32 0.34 0.13 0.25 0.19 1.00 — — — —
Hippurate 0.27 0.14 0.12 0.29 0.26 0.14 0.25 0.24 0.57 1.00 — — —
Methyl glucopyranoside (α + β ) 0.45 0.73 0.21 0.17 0.23 0.47 0.46 0.67 0.23 0.21 1.00 — —
Stachydrine 0.44 0.82 0.13 0.08 0.15 0.45 0.45 0.71 0.17 0.17 0.68 1.00 —
Tartronate (hydroxymalonate) 0.22 0.38 0.14 0.15 0.15 0.75 0.64 0.34 0.13 0.12 0.46 0.42 1.00

1P < 0.001 for all correlation coefficients. AASK, African American Study of Kidney Disease and Hypertension; MDRD, Modification of Diet in Renal Disease.
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such as fruits and vegetables, in the diet. It was expected and
promising that these 13 significant, replicated metabolites have
previously been shown to represent aspects of the diet and
metabolic pathways related to acid load, for example, the DASH
dietary pattern, protein, fruits, and vegetables. We found that
these 13 metabolites together significantly improved the ability
to classify high compared with low dietary acid load. As such,
these findings suggest the utility of a multimarker panel of
metabolites to reflect the multidimensional nature of dietary
acid load.

In the present study, adjustment for mGFR did not
substantially change the results in terms of the number of
significant metabolites, strength and precision of the estimates,
and significance levels. Prior research has demonstrated the
extent to which the metabolome reflects accumulation of
compounds in the blood in those with impaired kidney function,
i.e. decreased GFR (37, 38). It is particularly critical to adjust
for mGFR in analyses of metabolites and chronic kidney disease
progression, but it is perhaps less critical to do so in cross-
sectional analyses with exposures relatively unrelated to kidney
disease status, for example, dietary intake. Nonetheless, given
that there was some variability in baseline mGFR, all of our
main analyses were adjusted for mGFR.

There are several noteworthy strengths of our study. We used
a broad platform consisting of a wide range of compounds to
profile the metabolome, which maximizes the opportunity for
discovery of novel biomarkers of dietary acid load. In addition,
we estimated dietary acid load using objective measures, that
is, urine concentration of urea nitrogen to estimate protein and
urine potassium, rather than more error-prone self-reported
dietary intake. We were able to leverage a secondary dataset
generated by the same metabolomic platform and which was
conducted in another, independent study population of kidney
disease patients (i.e., the MDRD study) to replicate the study
findings from the discovery subset of AASK participants.

There are also some limitations to acknowledge. The replica-
tion sample differed from the discovery sample with respect to
baseline characteristics (race, health behaviors, health history),
which could in part explain why not all of the metabolites
replicated. In addition, the range of dietary acid load values also
varied between the 2 studies, potentially because of the protein
reduction intervention given that NEAP and metabolites were
measured at the 12-mo visit in the MDRD study, whereas data
were obtained at baseline in AASK. Residual confounding from
lack of measurement or imprecise measurement of confounders
could partially explain the findings. However, we were able to
adjust for several relevant demographic characteristics, health
behaviors and status, mGFR, proteinuria, and randomization
group. Each metabolite was listed as belonging to a single
metabolic superpathway and subpathway, whereas they could
be appropriately classified in a different manner. For example,
although S-methylmethionine was reported as an amino acid
and specifically related to methionine, cysteine, S-adenosyl
methionine and taurine metabolism, perhaps more relevant
is that it is a potential biomarker of cruciferous vegetable
consumption (31–33). Nonetheless, we used the pathway
designation for the sake of consistency of reporting results from
this platform.

In summary, a metabolomic profile of serum specimens from
kidney disease patients in 2 study populations identified 13
replicated metabolites associated with dietary acid load, after
accounting for demographics, study design, health behavior,
health status, mGFR, and proteinuria. Additional research is
warranted to validate that these compounds represent dietary

acid load in healthy populations, and to assess the relation
between these compounds and clinical outcomes. This panel
of 13 serum compounds may be used as a potential objective
marker of dietary acid load in future nutrition research studies.

Acknowledgments

The authors’ responsibilities were as follows—CMR: designed
the research study; MEG: provided study oversight; AS:
analyzed the data; ASL, MJS, LAI, LJA, and JC: conducted
research and provided essential materials; CMR: wrote the
paper and had primary responsibility for final content; and all
authors: read and approved the final paper.

References
1. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO

clinical practice guideline for the evaluation and management of chronic
kidney disease. Kidney Int Suppl 2013;3:1–150.

2. Haring B, Selvin E, Liang M, Coresh J, Grams ME, Petruski-Ivleva
N, Steffen LM, Rebholz CM. Dietary protein sources and risk for
incident chronic kidney disease: results from the Atherosclerosis Risk
in Communities (ARIC) study. J Ren Nutr 2017;27(4):233–42.

3. Rebholz CM, Crews DC, Grams ME, Steffen LM, Levey AS, Miller
ER, 3rd, Appel LJ, Coresh J. DASH (Dietary Approaches to Stop
Hypertension) diet and risk of subsequent kidney disease. Am J Kidney
Dis 2016;68:853–61.

4. Passey C. Reducing the dietary acid load: how a more alkaline diet
benefits patients with chronic kidney disease. J Ren Nutr 2017;27:151–
60.

5. Scialla JJ, Anderson CA. Dietary acid load: a novel nutritional target in
chronic kidney disease? Adv Chronic Kidney Dis 2013;20:141–9.

6. Scialla JJ, Appel LJ, Astor BC, Miller ER, 3rd, Beddhu S, Woodward
M, Parekh RS, Anderson CA; African American Study of Kidney
Disease Hypertension Study Group. Net endogenous acid production
is associated with a faster decline in GFR in African Americans. Kidney
Int 2012;82:106–12.

7. Scialla JJ. The balance of the evidence on acid-base homeostasis and
progression of chronic kidney disease. Kidney Int 2015;88:9–11.

8. Rebholz CM, Coresh J, Grams ME, Steffen LM, Anderson CA, Appel
LJ, Crews DC. Dietary acid load and incident chronic kidney disease:
results from the ARIC study. Am J Nephrol 2015;42:427–35.

9. Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with
fruits and vegetables or bicarbonate attenuates kidney injury in patients
with a moderately reduced glomerular filtration rate due to hypertensive
nephropathy. Kidney Int 2012;81:86–93.

10. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating
metabolic acidosis in CKD stage 4 hypertensive kidney disease with
fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol
2013;8:371–81.

11. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic
acidosis in patients with stage 3 chronic kidney disease with fruits
and vegetables or oral bicarbonate reduces urine angiotensinogen and
preserves glomerular filtration rate. Kidney Int 2014;86:1031–8.

12. Hedrick VE, Dietrich AM, Estabrooks PA, Savla J, Serrano E, Davy BM.
Dietary biomarkers: advances, limitations and future directions. Nutr J
2012;11:109.

13. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in
nutritional epidemiology: applications, needs and new horizons. Hum
Genet 2009;125:507–25.

14. Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in
addressing complexity in diet and health. Annu Rev Nutr 2012;32:183–
202.

15. Gassman JJ, Greene T, Wright JT, Jr., Agodoa L, Bakris G, Beck
GJ, Douglas J, Jamerson K, Lewis J, Kutner M, et al. Design and
statistical aspects of the African American Study of Kidney Disease and
Hypertension (AASK). J Am Soc Nephrol 2003;14:S154–65.

16. Beck GJ, Berg RL, Coggins CH, Gassman JJ, Hunsicker LG, Schluchter
MD, Williams GW. Design and statistical issues of the Modification of
Diet in Renal Disease Trial. The Modification of Diet in Renal Disease
Study Group. Control Clin Trials 1991;12:566–86.

584 Rebholz et al.



17. Pak CY, Odvina CV, Pearle MS, Sakhaee K, Peterson RD, Poindexter JR,
Brinkley LJ. Effect of dietary modification on urinary stone risk factors.
Kidney Int 2005;68:2264–73.

18. Maroni BJ, Steinman TI, Mitch WE. A method for estimating nitrogen
intake of patients with chronic renal failure. Kidney Int 1985;27:58–65.

19. Frassetto LA, Todd KM, Morris RC, Jr., Sebastian A. Estimation of
net endogenous noncarbonic acid production in humans from diet
potassium and protein contents. Am J Clin Nutr 1998;68:576–83.

20. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated,
nontargeted ultrahigh performance liquid chromatography/electrospray
ionization tandem mass spectrometry platform for the identification and
relative quantification of the small-molecule complement of biological
systems. Anal Chem 2009;81:6656–67.

21. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman
HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation
to estimate glomerular filtration rate. Ann Intern Med 2009;150:
604–12.

22. Israelit AH, Long DL, White MG, Hull AR. Measurement of glomerular
filtration rate utilizing a single subcutaneous injection of 125I-
iothalamate. Kidney Int 1973;4:346–9.

23. Greene T, Bourgoignie JJ, Habwe V, Kusek JW, Snetselaar LG, Soucie
JM, Yamamoto ME. Baseline characteristics in the Modification of Diet
in Renal Disease study. J Am Soc Nephrol 1993;4:1221–36.

24. Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction.
Biol Psychiatry 1998;44:775–7.

25. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin
Trials 1986;7:177–88.

26. Rebholz CM, Lichtenstein AH, Zheng Z, Appel LJ, Coresh J.
Serum untargeted metabolomic profile of the Dietary Approaches
to Stop Hypertension (DASH) dietary pattern. Am J Clin Nutr
2018;108(2):243–55.

27. Playdon MC, Moore SC, Derkach A, Reedy J, Subar AF, Sampson JN,
Albanes D, Gu F, Kontto J, Lassale C, et al. Identifying biomarkers of
dietary patterns by using metabolomics. Am J Clin Nutr 2017;105:450–
65.

28. Steadman KJ, Burgoon MS, Schuster RL, Lewis BA, Edwardson
SE, Obendorf RL. Fagopyritols, D-chiro-inositol, and other soluble

carbohydrates in buckwheat seed milling fractions. J Agric Food Chem
2000;48:2843–7.

29. Playdon MC, Sampson JN, Cross AJ, Sinha R, Guertin KA, Moy KA,
Rothman N, Irwin ML, Mayne ST, Stolzenberg-Solomon R, et al.
Comparing metabolite profiles of habitual diet in serum and urine. Am
J Clin Nutr 2016;104:776–89.

30. Guertin KA, Moore SC, Sampson JN, Huang WY, Xiao Q,
Stolzenberg-Solomon RZ, Sinha R, Cross AJ. Metabolomics in
nutritional epidemiology: identifying metabolites associated with diet
and quantifying their potential to uncover diet-disease relations in
populations. Am J Clin Nutr 2014;100:208–17.

31. Rebholz CM, Zheng Z, Grams ME, Appel LJ, Sarnak MJ, Inker LA,
Levey AS, Coresh J. Serum metabolites associated with dietary protein
intake: results from the Modification of Diet in Renal Disease (MDRD)
randomized clinical trial. Am J Clin Nutr 2018.

32. Song JH, Lee HR, Shim SM. Determination of S-methyl-L-methionine
(SMM) from Brassicaceae family vegetables and characterization of the
intestinal transport of SMM by Caco-2 cells. J Food Sci 2017;82:36–43.

33. Grunau JA, Swiader JM. Chromatographic quantitation of free amino
acids: S-methylmethionine, methionine and lysine in corn. J Plant Nutr
1991;14:653–62.

34. Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP,
MacGregor A, Steves CJ, Cassidy A, Spector TD, et al. Hippurate as a
metabolomic marker of gut microbiome diversity: modulation by diet
and relationship to metabolic syndrome. Sci Rep 2017;7:13670.

35. Walsh MC, Brennan L, Pujos-Guillot E, Sebedio JL, Scalbert A, Fagan
A, Higgins DG, Gibney MJ. Influence of acute phytochemical intake on
human urinary metabolomic profiles. Am J Clin Nutr 2007;86:1687–
93.

36. Debolt S, Melino V, Ford CM. Ascorbate as a biosynthetic precursor in
plants. Ann Bot 2007;99:3–8.

37. Coresh J, Inker LA, Sang Y, Chen J, Shafi T, Post WS, Shlipak MG, Ford
L, Goodman K, Perichon R, et al. Metabolomic profiling to improve
glomerular filtration rate estimation: a proof-of-concept study. Nephrol
Dial Transplant 2018 doi: 10.1093/ndt/gfy094. [Epub ahead of print].

38. Rhee EP. How omics data can be used in nephrology. Am J Kidney Dis
2018;72:129–35.

Metabolomics of dietary acid load 585


